平凡文学

平凡文学>离语婷 > 第270章 好沉(第1页)

第270章 好沉(第1页)

是pinecone提供了直观的ApI和友好的用户界面,如图4.2与图4.3所示,使得开发者可以轻松

地创建索引、存储向量数据以及执行查询操作。

weaviate是一个向量搜索引擎数据库,它专注于连接和管理分散的数据,并通过语义链接来

解析和查询这些数据。它的主要功能包括语义搜索、数据链接和知识图谱构建。weaviate的关键

特性包括机器学习集成,支持多种相似度度量,如欧氏距离和余弦相似度,以及可扩展性。

weaviate的主要用途是帮助开发者构建智能应用程序,利用其强大的语义搜索和数据关联功能

从而实现更智能、更个性化的数据检索和推荐。其特点包括开源、高度可扩展、语义搜索功能强

大、支持多种数据类型和格式等。这使得weaviate在处理大规模复杂数据集时表现出色,特别适

用于智能问答、搜索引擎和图像识别等领域。

本章介绍了向量知识库在信息检索和数据管理中的具体优势,随后介绍了向量知识库的构建,

是提取分割文本,嵌入向量,随后构成向量知识库。给出了embedding的原理以及给出了使用

embeddingApI将数据变成向量的代码示意,经过向量化的数据,将其存入pipecone,后将数据

库与weaviate相连,完成语义搜索、数据链接和知识图谱构建

术是一种结合了检索和生成机制的深度学习框

架,用于增强语言模型的性能,尤其适合于构建特定领域的专业大模型。这一技术通过从大规模知

识库检索相关信息,然后将这些信息融入生成过程中,来生成更准确、更丰富的响应。本节将详细

阐述如何使用RAG技术基于通用大模型搭建电力生命周期评估(LcA)领域的专业大模型。

RAG技术核心在于将传统的语言生成模型与信息检索系统结合起来。这种结合不仅使模型能够

生成语言,还能从大量的文档中检索到具体的事实和数据,从而提供更加精确和详细的生成内容。

RAG的工作流程大致可以分为以下几步:

查询生成:根据输入,如一个问题或提示,生成一个查询。

文档检索:使用生成的查询在知识库中检索相关文档或信息。

内容融合:将检索到的信息与原始查询融合,形成新的、丰富的输入。

答案生成:基于融合后的输入,使用语言生成模型生成最终的文本输出。

先前已经构建好了针对电力LcA领域的专业大模型,但是缺少检验模型的手段,即缺少模型优

化环节,本项目设置通过chatbot模式,通过与用户进行问答的形式,检验模型是否能调用电力行

业LcA领域向量数据库回答该领域专业性问题和时效性问题的有效性。

chatbot模式的测试不仅可以验证模型的知识覆盖范围和答案的准确性,还可以评估模型的用

户交互能力。这种测试模拟真实用户与模型的交互,可以揭示模型在理解和生成回应方面的潜在问

题。

测试流程包括以下几个步骤:

测试设计:根据目标领域定义测试用例,包括典型问题、边缘情况和错误输入。

请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

相邻推荐:八步焚屠  开局觉醒蛊师,谁说虫族不算蛊?  末世游戏:首杀拿到SSS级奖励  离婚后,我被坑上恋综,前妻急了  重生年代,我的1978  斗罗:血脉不够?脑子来凑  狂徒下山:我有五位绝色师父  灾年先断亲,手持空间赚翻天!  火影之我真不是宝可梦  怀了金龙崽后,假千金A爆全星际  模拟修仙:圣女别怕,有我在  未来通货膨胀,我却赚了几百亿  大唐:太子的轻松日常  从献祭寿命开始封圣称帝  东京:我在山手线捡到问题少女  高达之超级G宇宙  神医下山:先拿养子开刀  弓破九霄  大明:靖难刚成功,老朱复活了?  黑锦鲤两岁半,全皇朝宠疯了  

已完结热门小说推荐

最新标签